The Structures of 2,1,3-Benzoxadiazole (Benzofurazan) and 2,1,3-Benzothiadiazole (Piazthiole) - A Computational Study

Willy Friedrichsen

Institute of Organic Chemistry, University of Kiel Otto-Hahn-Platz 4, D-24098 Kiel, Germany

Abstract: The structures of 1.2.5-oxadiazole (furazan, 1), 2.1.3-benzoxadiazole (benzofurazan, 2) and 2.1.3-benzothiadiazole (piazthiole, 3) have been calculated by *ab initio* and density functional theoretical (DFT) methods. Within a given basis a DFT methodology seems to be superior to RHF and MP2 methods.

Although benzofurazanes were already described at the end of the last century¹ the structure of the parent compound (2) seems to be unknown^{2,4,5}. Certain quantum chemical methods have now reached a state of maturity where reliable results (e.g., bond distances, bond angles) can be obtained with a degree of confidence that they can be judged against experimental data and there are several reports, where experimental data have been scrutinized critically⁶. Therefore a study was undertaken to obtain geometrical data (bond lengths, bond angles) of 2 and 3 which should be more reliable than those reported in^3 .

In order to test the suitability of quantum chemical methods for compounds of this type first calculations were performed for furazan $(1,2,5$ -oxadiazole, $1)^7$, since the exact geometry of this compound has been determined by microwave spectroscopy⁸. In Table 1 the results of semiempirical (AMI, PM3)⁹¹⁰, ab *initio*¹²⁻¹⁶ and density functional theoretical (DFT) methods¹²⁻¹⁷ are given. Obviously DFT methods are most reliable in the prediction of geometrical parameters (bond lengths, bond angles), but only if Becke's nonlocal three-parameter exchange and correlation functional¹⁸ in conjunction with the Lee-Yang-Parr correlation functional¹⁹ (B3LYP)¹⁴ are used. These observations are in line with results obtained for other compounds of a similar type (nonclassical furoxans²², furoxans²³, benzofuroxans²³).

The extension of these calculations to benzofurazan (2, Table 2) reveals that the geometry of the heterocyclic moiety in 2 remains nearly the same as in 1 irrespective the fact that a benzene ring is annulated to 1. Additionally benzofurazan must be considered as a strongly localized o -quinoid system. The stability of these compounds can of course be understood quite simply within the HMO level taking into consideration the principle of topological charge stabilization²⁴. Although the exact geometry of 2 seems to be unknown there are a few X-ray data of *substituted* benzofurazans⁵. Compared with these data DFT calculations seem to be most reliable in predicting the geometry of these compounds; the influence of an extended basis set within this methodology (6-31G* \rightarrow 6-311G**) seems to be only marginal (Table 2).

Method	ΔH_f° , E	ZPE ^d	$r_{1,2}$	$r_{2,3}$	$r_{3,4}$	$\omega(1-2-3)$	$\omega(2-3-4)$	$\omega(2-1-5)$
AM1	85.49 ^b	٠	1.334	1.338	1.480	107.43	106.13	112.87
PM ₃	74.45^b	\blacksquare	1.383	1.321	1.453	110.44	106.60	105.91
$RHF/6-31G*$	-260.54739 °	31.7	1.333	1.275	1.429	106.51	107.70	111.59
$RHF/6-311G**$	-260.60846 ^e	31.5	1.327	1.273	1.430	106.65	107.52	111.65
$MP2/6-31G*$	-261.31688 °	28.8	1.374	1.329	1.404	104.68	109.25	112.16
$BLYP/6-31G*$	-261.99813 °	27.5	1.402	1.322	1.431	104.80	109.57	111.32
B3LYP/6-31G*	-262.04701 °	28.8	1.372	1.307	1.423	105.31	108.90	111.59
B3LYP/6-311G**	-262.11211 °	28.6	1.369	1.303	1.422	105.44	108.83	111.46
exp.			1.3729	1.3032	1.4211	105.53	108.89	111.15

Table 1: Calculated Data for Furazan (1, bond lengths in A)^a

^a All stationary points have been characterized as minima by calculation and diagonalization of the Hessian matrix²⁰²¹; ^b AH_c in kcal/mol; ^c Energy in a.u.; ^d Zero point vibrational energies (in kcal/mol); ^e See^{8a}.

Method	ΔH_f° , E	ZPE	$r_{1,2}$	$\mathbf{r}_{1,7a}$	$\Gamma_{3a,4}$	$\Gamma_{3a,7a}$	$\mathbf{r}_{4,5}$	$\mathbf{r}_{5,6}$
AM1	113.43	٠	1.327	1.352	1.430	1.494	1.361	1.438
PM ₃	102.99	\blacksquare	1.374	1.335	1.434	1.456	1.357	1.443
$RHF/6-31G*$	-413.18139	63.5	1.330	1.285	1.441	1.427	1.340	1.461
$RHF/6-311G**$	-413.27069	63.0	1.325	1.282	1.440	1.427	1.339	1.462
$MP2/6-31G*$	-414.45912	\blacksquare	1.370	1.353	1.414	1.418	1.380	1.427
$BLYP/6-31G*$	-415.56645	56.2	1.400	1.338	1.432	1.451	1.382	1.445
B3LYP/6-31G*	-415.67801	58.4	1.369	1.323	1.426	1.437	1.368	1.441
B3LYP/6-311G**	-415.77590	56.6	1.365	1.318	1.425	1.436	1.364	1.440
exp ^b			$1.365 -$ 1.377	$1.310 -$ 1.314	$1.423-$ 1.429	1.424	$1.340 -$ 1.352	1.428

Table 2: Calculated Data for Benzofurazan (2, bond lengths in A)^a

^a Footnotes as in Table 1; ^b See^{5a}.

It is of course of interest whether the predictive power of these methods is also applicable to heterocyclic systems which contain second-row elements. 2,1,3-Benzothiadiazole (piazthiole, 3) was chosen as a model system. The results of various theoretical methods are given in Table 3. Again there seems to exist no exact structure determination of the parent compound 3, but structures of a few substituted derivatives²⁵ and metal complexes²⁶ have been reported. Provided that metal complexation does not change the geometry of the parent compound considerably there is again a good correspondence between experimental data and DFT results except the bond distance $r_{1,2}$ (N-S) and $r_{3a,7a}$, which both are calculated approximately 0.02 Å to long.

Method	ΔH_f °, E	ZPE	$r_{1,2}$	$\mathbf{r}_{1,2a}$	r_{3a4}	$r_{3n/2n}$	$r_{4,5}$	$r_{5,6}$
AM1	76.02		1.636	1.337	1.435	1.495	1.361	1.431
PM ₃	53.32	-	1.715	1.334	1.437	1.461	1.356	1.438
$RHF/6-31G*$	-735.91309	60.9	1.620	1.301	1.439	1.441	1.343	1.451
RHF/6-311G**	-736.00367	60.9	1.616	1.300	1.439	1.441	1.341	1.452
$MP2/6-31G*$	-737.13517	61.5	1.634	1.368	1.413	1.434	1.381	1.421
BLYP/6-31G*	-738.58879	54.9	1.673	1.355	1.432	1.466	1.384	1.439
B3LYP/6-31G*	-738.71690	56.9	1.645	1.339	1.426	1.452	1.371	1.434
B3LYP/6-311G**	-738.82193	56.6	1.640	1.337	1.423	1.449	1.367	1.432
exp ^b			$1.610 -$ 1.628	$1.332 -$ 1.358	$1.407 -$ 1.424	$1.416-$ 1.428	$1.340 -$ 1371	$1.411-$ 1.428

Table 3: Calculated Data for 2,1,3-Benzothiadiazole (Piazthiole) (3, bond lengths in \hat{A})^a

^a Footnotes as in Table 1; ^b See²⁶.

As already observed for 1 (and 2) there is no crucial influence of the basis set $(6-31G^* \rightarrow 6-311G^{**})$. In conclusion it can be stated that DFT methods of the type described above (B3LYP/6-31G*) are valuable theoretical tools for structure determinations of even unusual heterocyclic systems.

Acknowledgement: The continuous support of our work by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- 1. Review: W. Friedrichsen in Houben-Weyl, Methoden der Organischen Chemie (E. Schaumann, Ed.), Vol. E 8 c, Thieme Verlag, Stuttgart 1994, p. 697.
- 2. An X-ray structure determination has been reported³. The probable error in the interatomic distances was given as \pm 0.07 Å.
- 3. P. V. Luzzati, Acta Cryst. 1951, 4, 193.
- 4. As has been pointed out earlier the results reported in³ seem to be unreliable: 4a. N. M. D. Brown, D. L. Lister, J. K. Tyler, Spectrochim. Acta 1970, 26A, 2133. - 4b. M. H. Palmer, S. M. F. Kennedy, J. Mol. Struct. 1978, 43, 33.
- 5. X-ray structure determinations of substituted benzofurazans: 5a. M. Ramm, J. Kind, H.-J. Niclas, Acta Cryst. 1993, 49C, 1779. - 5b. H.-J. Niclas, B. Göhrmann, M. Ramm, B. Schulz, J. Prakt. Chem. 1990, 332, 1005. - 5c. M. Mathew, G. S. Palenik, Acta Cryst. 1971, 27B, 1388 and references cited within these papers.
- 6. 6a. H. F. Schaefer III, 2nd World Congress of Theoretical Organic Chemists (WATOC), University of Toronto, Toronto, Canada 1990, Abstr. Pap. C0-02. - 6b. I. Frank, S. Grimme, S. D. Peverimhoff, J. Am. Chem. Soc. 1994, 116, 5949.
- 7. Review: W. Friedrichsen in Houben-Weyl, Methoden der Organischen Chemie (E. Schaumann, Ed.). Vol. E 8 c, Thieme Verlag, Stuttgart 1994, p. 649.
- 8. 8a. O. Stiefvater, Z. Naturforsch. 1988, 43A, 597. 8b. O. Stiefvater, S. Klee, Z. Naturforsch. 1993, 48A, 692 and references cited within these papers.
- 9. 9a. J. J. P. Stewart in Reviews in Computational Chemistry (K. B. Lipkowitz, D. B. Boyd, Eds.), VCH Publ., New York 1990, p. 45. - 9b. M. C. Zerner in Reviews in Computational Chemistry (K. B. Lipkowitz, D. B. Boyd, Eds.), Vol.2, VCH Publ., New York 1991, p. 313.
- 10. The program system MOPAC 6.0 was used for these calculations $¹¹$.</sup>
- 11. OCMP 113: OCPE Bulletin 1992, 12, 72.
- 12. All *ab initio* and density functional theoretical studies have been performed with the GAUSSIAN 92 suite of programs^{13,14}.
- 13. GAUSSIAN 92, Revision E.2, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian Inc., Pittsburgh PA, 1992.
- 14. GAUSSIAN 92/DFT, Revision G.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian Inc., Pittsburgh PA, 1993.
- 15. See, e.g., W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York 1986.
- 16. For earlier theoretical studies see^{4b} and references cited within this paper.
- 17. 17a. R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford 1989. - 17. J. K. Labanowsky, J. W. Andzelm, Density Functional Methods in Chemistry, Springer Verlag, New York 1991. - 17c. T. Ziegler, Chem. Rev. 1991, 91, 651. - 17d. N. C. Handy, in Lecture Notes in Chemistry II. European Summer School in Quantum Chemistry. Lecture Notes in Chemistry (B. O. Roos, Ed.), Vol.64, Springer Verlag, New York 1994, p. 91.
- 18. A. D. Becke, J. Chem. Phys. 1993, 98, 5468 and references cited therein.
- 19. C. Lee, W. Yang, R. Parr, Phys. Rev. 1988, 41B, 785.
- 20. A. Komornicki, J. W. Mc Iwer, J. Am. Chem. Soc. 1972, 94, 2625.
- 21. J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods: A Guide to using GAUSSIAN, Gaussian Inc., Pittsburgh PA, 1993.
- 22. B. Klenke, W. Friedrichsen, Tetrahedron 1996, 52, 743.
- 23. B. Klenke, W. Friedrichsen, unpublished results.
- 24. See, e.g., D. Bonchev, W. A. Seitz, Khim. Geterotsikl. Soedenii 1995, 1011 (in English).
- 25. T. Suzuki, T. Okubo, A. Okada, Y. Yamashita, T. Miyashi, *Heterocycles* 1993, 35, 395. There is probably a misprint in Fig. 2 (1.349 Å instead of 1.394 Å for the bond distance C1-C3).
- 26. M. Munakata, T. Kuroda-Sowa, M. Maekawa, M. Nakamura, S. Akiyama, S. Kitagawa, *Inorg.* Chem. 1994, 33, 1284.

Received March 25, 1996